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Abstract

This paper i8 concerned with a computer program used for studies of the
disturbéd zones around bodies in flowing plasmas, partiev'arly spacecraft and
their associated sheaths and wakes. The program solves a coupled Poisson-
Vlasov system of nonlinear partial-differential-integral equations to obtain distri-
butions of electric potentisl and ion énd electron density about a finite-length
cylinder in a plasma flow at arbitrary ion Mach numbers. Using the author's
"inside-out method"® which follows ion and eléctron trajectories backward to their
origin at the body surface or in the undisturbed plasma, together with a spetial
itération algorithm for self-consistency, the program takes into account the parti-
cle thermal motions with relativély few simplifying assumptions. The appfoach is
applicable to a larger range of parameters than other available approdches. In
Sample calculations, bodies up to 100 Debye lengths in radius are treated, that is,
larger than any previously treated realistically. Applicatioris are made to in-situ
satellite experiments.
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1. INTRODUCTION

The problem o6f theoreticilly calculating the structure of the disturbed plasnia
{frequently referring to the wake and/or sheath) around a moving body in space in-
volves the solution of a complicated system of ¢oupled nonlinear partial differential/
integral equations. 1. The equations consist of the Vlasov (collisionless Boltzmann)
equations for the ions and electrons, and the Poisson equation relating the electric
field to the distributions of ions and electrons. The difficulty is essentially a
pumerical oné because analytic solutions are not possible (for cases of intérest),
and there is no unique approach. In cases of stationary bodies, -5 as well as
moving bodies (theoretical references cited by Parkerl), combinations of numeri-
cal techniques (finite differences, iteration, quadratures, etc.) are required for
treating various parts of the problem. For either stationary or moving bodies,
the cholces of techniques and their use to achieve consistent solutions for any
given set of physical parameters (defining body and plasma) have never been
obvious. Innovations are frequently required. The purpose of this paper is to
present a technique suitable for a pillbox-shaped body (with emphiasis on the

wake), 1 which appears to be reasonably successful over a large range of the physi-

cal parameteérs, and to présent sample solutions including applications to ifi-8itu

spacecraft data. The pillbox problem is {llustrated schematically in Figure 1.

pILLEGX SEONETRY

PLASMA FLOW

Figure 1. Spacecraft and
Plasmia-Flow Geometry
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Various dpproathes which Have been used for this type of problem are stitti-
marized by Parker. 1 In all such calculations, simplifying assumptions are made,
The customary ones are:

(1) Collisions negligible (but extensions of Rarker's collisional tl‘ieory4 may be
feagible for the wake probletn).

(2) Geomagnetic field negligible.

(3) Simplified geomnetry (use of various types of symmetries).

(4) Simplified surface reactions (usually, charged particles are neutralized).

(5) Préscribed surface emission (usually none, but simplified phétoelectron,
backscattered-electron, and secondary-eléctron emission are includable)..

(6) Conducting body (usually perfectly conducting, but finite conductivities
are includable).

(7) Steady state.

These assumptions may be questioned (for example the neglect of time-
dépéndent phenomena), but théy may be at least pdrtially relaxed by employing
known techniques to generalize the calculations. In the interest of achieving
reasonably ecohomical calculations within the limits of available computers, the
above assumptions in their usual form are adopted in the présent work.

The tethniques and comruter program describéd by Parkérl have been devel-
oped to solve the coupled Poisson-Vlasov system of equations to obtain distribu-
tions of ion and electron density, and potential, about three-dimensional bodies
(with axial symmetry about the direction of plasma flow). The method involves the
use of a numerical grid or mesh of discrete points in space, with the potential and
density distributions defined at these points, The Poisson and Vlasov equations are
represented in finite-difference form at the gtid points. A sample of such a dig-
cretization in r-2 space is shown in Figure 2. Here the poirnts represent circular
rings about tho z-axis. Associated with each point {s a volume, in the form of a
cylinder for points alofig the axis, and in the form of a torus of rectangular cross-
section for all other points. '

For the pillbox problem of Figure 1, the grid used has the form shown in
Figure 3. The spacecraft surface is shown by a heavy outline in the intérior of the
grid. The surface of the pillbox coincides with certain rows dnd columns of grid
points as shown. Here, the grid points are unequally spaced, so that a higher
density of points can be used near the spacecraft surface ard a lower deiisity
furthér away. This sllows a given number of grid points to be used efficiently.

The potentials at poirits on tlie surface can vary arbitrarily; the potential distribu-
tion shown corresponds to one part of the surface beirig at ohe potential (the
"probe") while the remaindér ig at anothe. potenttal. (The suiface can consist of
portions with arbitrarily assigried conductivity dnd emtssion characteristics. The
actual riimbef of grid points used was of the order of liundreds, rather than tens
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Figure 2. Discretization in r-2 Space

ag {llustrated.) The shaded areas surrounding grid points are the cross-sections
of toroidal volurmes as in Figure 2. At the outer boundary of the grid, one must
represent nutnérically the boundary condition at infinity, narnely, such that the
potential vanish and the velocity distribution be the unperturbéd one. This boundary
must be sufficiently far out to répresert the outér condition accurately. It turns
out to be moreé efficient to use a "floating" rather than a "fixed" condition on the
potential (Section 3).

While the present problem is axially symmetric, it can be generalized to three
dimensions as follows. The grid in Figure 3 consists of points in r-z space, and
the associated volumes are tori. The generalization would consist of including the
azimuthal variation by adding an azimuthal angle 8 to the coordinate system. The
digeretization in & wéuld consist of having a number of azimuthal planes in r and 2,
éach labeled by a given value of 6. Thus, for example, the r-z plane of Figure 3
would be characterized by a given value of . The volumes associated with the grid
points would then be ple-shaped.

in the hext section (Section 2) the "inside-cut" method for evaluating particle
fliukes and densities (solving the "Viasov problem'), developed by the avthor® 1
1964, will be discussed; with :éférence to the grid of Figuré 3. In this method
the ion and electron trajectories are followéd backward in time, from the point in
space at which 1t {8 désired to kiiow the velocity distribition; to the source of the
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Figure 3. Difference Equation Grid

particles in the undisturbed plasma or at the gurface, where the distributions are
known. Figure 4, reférred to again {n the next gection, illustrates 8chematically
How a trajectory is traced backward from any point P and {s found éither to reach
the body surfacé or "infinity" at the boundary of the grid. (Thé péint P is usually
but not necessarily oneé of the épatial grid points; it can also be a surface point. )
The "delta-factor" 8,y is a cutoff function, and i, j, and k are indices agsociated
with one of the trajéctories used to evaluate density or flux és discussed {n the
fiext section. The case illtstrated is for contributiofis from thie ambient plastiig;

for contribitions from the surface, the values of 8 (zeéro and uriity) are interchanged.
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Figure 5 illustrates the four possible types of trajectories which cati contribute
to the particle density at a point. These are Types 1, 2, 3, and 4, so-named by
Parker? and defined as follows:

Type 1

One-way trajectories, going from infinity to the surface, or from the surface
to infinity.
Typé 2

Two-way trajéectories from infinity, which come in, pass through & position at
minimum distance from the body surface, and go out again.

Type 3
Two-way trajectories from the body surface, which go out, pass through a
position at maximum distance from the body surface, and come in again.

Type 4
Closed or nearly-closed trajéctories which orbit about the body indefinitely.
These cén orily be populated and depopulated by collisiéns, which are neglected in
the predent work. An analysis of the effects of colllsions on Type-4 trajectdries
has beeri performed by Parker. 4

it should be ri6ted that contributions to surface flukes can bé comprised ornly of
Type-1_ atid Type-3 trajectories; while all four types contributé to spr ce charge.
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Figure 5. Types of Orbits

In Section 3 t1e "Poigson Problem" is discussed, where the electric field
(potential distribution) is computed with the isn and electron densities considered
known.. On the other hand, the ""V1agov Problem' (Section 2) involves computation
of the ion and electron densities with the field considered known. Hence, since
neither the field nor the particle densitied are knowh initially, the Poissnn and
V1asov problems must be dolved simultaneously.

An iteration method may be used for computing self- consistent charged-
particle and potential distributions. This is herein referred to as thé "Poissori-
Vlasov itération." Two principal options are employed for this procedure in the
présent program. In one of the options, the "charge-density" option, the space
charge {8 {nitially ahd arbitrarily assumed to be zero. For this case, one obtains
the Laplace (space-charge-less) electric fiéld from the Poisson problem. This is
the "zerc-order" potential distribution, which becorries input to thé Viasov problem.
Thé fesulting solution of the Viasov probleni yields thie ion dand electron densities
at the grid points, which are combined to inal.» ""zero-order' chaige densities.
These becomé inpiit to the hext Poisson problém, which then yields thie "fifst-order”
potentials, and so on. [Ih this procedufe one usually "mixes' successive charge-
dérisity iterates to lmprove stability; otherwise, the process can "blow up." One
cah also mix poténtial iterates rathier than densities if desired. The dependénce
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of the stability and convergence of the above procedure on the mixing paramieter
have been studied analytically by Parker? and Parker and Sullivan. 8 (No other
analysis of this type has been published to the author's knowledge. ) This (charge- #
density) option is most effective when the spatial region of initerest is not too many

Debye lengths across. The analysis shows that ohe can (probably alwdys) ¢hoose a
mixing parameter sufficiently small to énsuré convergence, but at the expénse of
additional iterations.

In the other dption, the "ion-density option, ' the ion density distribution alone
is assumed initially. Initial guesses which can be eriployed include (1) zeéro ioh
density everywhere, (2) unit ion densgity (the ambient value) everywhere, and (3) the
neutral ion density which obtains when there are no forces. Whichever choice is
made for the initial guess is designated the ''zero-order" ion density. Now if one
can assume the electron dénsity to be given by the Boltzmann factor eéxp(p), thus
avoiding trajectory calculations for the electron$ and affording computer economy,
the Poisson equation may be solved, holding the ion densities fixed, but regarding
both the potentials and the electron densities at the grid points as unknowns. This
i8 a nonlinear problem, which is solvablé by a modification of the rélakition pro-
cedure used for the "'charge-density" option. The hew procedure is an important
advance sincé the iteration is not as sensitive (tendirng to blow up) for small Debye
numbeérs ag in the charge density option. Thus, very large bodies (in multiples
of the Débye length) can be treated. This has beén the method used to obtain the -
large-body results shown below. 1 Similar ideas have been uséd by Call9 and
Fournier, 10 but thése workers have not tréated largeé bodies.

The assumption that the electron density is givén by the Boltzmann factor é
betomes invalid whén the body surface potentidl is near zéro, or wheén there is a
potential barrier or "well" in the wake such that the wake potentials aré more nega-
tive than the gurface potential (causing electrons to be attracted to the surface
rather than repelled from it). In this case it is still possiblé to use the ion-density
option, with its large-body capability, provided that, within each "major" iteration
cytle a "minor" iteration is carried out with the iori densities held fixed such that
the electron densities are computed realigtically by trajectory calculations, at
least for points near the surface.

This latter technique is as yet in an experimental stage, but it seems promis-
ing in that it may produce Solutions with reasonable cobts for large-body problems;
in such problems, the conventional Poissoti-Vlasov iteration based on the clidrge-
density option becomes expetisive. 8 a disadvantage of the ion-dérsity option,
However, i8 thdt its corivérgence properties aré fot understood; therefore, its costs
arée difficult to predict. This s iti cofitrast to the case of tlie chiarge-density option
wheré an ahalysis is available. 8
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Before considering further details, we make here some general remirks con-
cerning the method. Following this, the principal results will be summarized.

Briefly, the present approach! differs from those of Call® and Martin}! by
including both the ioh and the electron thermal motions, whereas Call and Martin
represent the distribution of ions by a cold beam and use an "outside-in" method. !
The approuch differs from that of ’I‘:‘a,ylbr12 in that (1) it is spplied to three-dimen-
sional bodies whereas Taylor treats an infinitely-long "thick strip' of rectangular
cross-section, and (2} the Poisson and V1asov calculations are cycled until self-
consisténcy is achieved, whereas Taylor's calculation i8 hot self-consistent because
it is terminated after the first cycle. The approach différs from that of Grabowski
and Fischer!? because they (1) assume that quasireutrality holds everywhere (an
invalid assumption in the véry near wake - see below and Section 5), and (2) apply
their method to an infinitely-long cylinder. Differences with othier methods are
outlined in Parker. ! The most similar calculation previously done was for an
infinitely-1ong cylinder by Fournier, 10 using the insidé-out method. The present
author has used the method for two-eléctrode rockét-borne7 and laboratory probe
systems, 4 fur the problem of a small probe in the sheath of a large electrode, 4 and
most reéently for the problem of the pillbox-shaped spacecraft. 1 The inside-out
method was also uséd by Parker and Whipple 12 for the theory of a satellite flush-
motuntéd probe.

Two major advances are represented by the presént program, as opposed to
previous approathes, particularly with regard to wakes of three-dimensional
bodies:

(1) Thermal motions of ions as well a8 of electrons are treated realistically
by following their trajectories in the electric field. (The ion and electron tempera-
tures can be different. )

(2) The technique for achieving self-consistency i promising for large bodies
many orders-of-magnitude larger then the Debye length (the Shuttle-Orbiter or the
moon, for example).

Solutions may be obtained with reasonable amounts of computer time by
judicious choices of grid points and other numerical parameters. The method can
be extended to include an arbitrarily-shaped body (preséntly a body of revolution),
electron emission from the surface, and differertial charging when the surface
consists of gections with different conductivity.

In Sections 2 and 3 some detafls of the techniques for the flux and density
calculdtion ("V1asov probiem'), diid for the Poisson calculation, are treated.

Sample calculational results are preserited in Sections 4 and 5.
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1.1 Sumimary of Peincipal Results

The principal results are as follows. In-situ experiments associated with the
Ariel 1 and Explorer 31 satellites are modelsd by & pillbox gesmetry. The Arfel 1 ‘
experiment observes distinct wake structurés aSsociated with the main body and a
small external {on probe. Transverse profiles of electron current are measured
at 5 main-body radii downstream. The two wake structures are similar in that
they both show a below-ambient ¢entral core or peak within a depleted-region of the
order of the width of the tmain body. The theoretical results for the assumed values
of the parameters associated with the experiment show no well-défined central core.
They further show that all structure dies away beyond 6 or 8 radii downstream.

A pronouriced electrrical focusing or ions in the wake of the highly-negative ion probe
is predicted by the calculation, but this disturbance i confined to the relatively
near wake and does not persist downstréam. The filling of the wake in both cases
by the plasma suggests a-fluid-like bulk motion of the plasma. As one moves down- '
stream with the plasma, the motion is at first radially inward. This is followed by ;
a pile-up and a single "bounce" after which the motion.is-outward.Simultanecusly,

the disturbance becotnes weak and dies away.

Two Exploret 31 cases are compiuted for different values of the ion Mach
number (the other parameiers remaining roughly comparable), and in both cases
the body is several kT riegative. In the case of the larger Mach-num’.er (3.4), the
ion density in the near wake is below the corresponding électron demsity, and both
are significantly below ambiént. This is consistent with the traditional picture of
wake structures with ion Mach numbers significantly above unity. In the case of
the lower Mach number (1. 1) the ioh density in the near wake is above the corres-
ponding electron density, and moreover the ion density is roughly ambient. This
latter may seem unexpected, but i{s uriderstandable on the basis 6f Langmuir-probe
sheath theory: In the sheath of & sl6wly-moving negative probe the ion density
should predominate over the electron dénsity. This latteér result {s new i{n wake
theory, and arises because low-Mach-number wakes with.space charge have not
been previously rigorously computed.

For the wake of a large body (100 Debye lengths in radius) in the form of a disk,
the results show that quasineutrality is valid outside of a cone-ghaped region in the
very near wake, and is invalid within this region. Other features of the large-body
wake structure include (1) a potential well in the near wake, and (2) a central core
of approximately ambient density of both ions and electrons. This latter feature
seems similar to that observed in the Ariel 1 experiment.
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2. THE INSIDE-OUT-METHOD

There {s mére than ofie approach to the problem of culculating sheath arid wike
structires. These approaches have in common the follawing elerments. The quanti-
tiés to be computed include (1) the potential distribution, and (2) the ion and electron
density distributions. One may also fnclude the associated surface current densi-
ties. The equations to be solved sithultanecusly are (1) the Vlasov equation for ions
(2) the V1asov equation for electrons, and (3) the Poisson equation. The solutions
of the Vlasov equations (velocity-distribution functions) are used to compute number
densities (and surface current densities). The number-density distributions become
input to the (right-hand side of the) Poisson equation which yields the potential
distribution. Finally, an iterative procedure is used for self- consigténcy, wherein
the density and potential distributions are successively ¢ycled until satisfaétory
convergence has been achieved.

The steady-state Vlasov equations for ions and electrons state that the velocity
distribution functione remain cotistant along particle trajectories. With the eleetric
field assumed given (numerically in terms of a spatial grid about the body), &olving
the V1asov equations means formally that one determines, from the shapes of the
trajectories, thz ion and electron velo¢ity distributions at the grid points. The tra-
jectories relste local velocities at a given grid point to those at infinity or the sur-
faée. THhrough thése relatiohships, the ion or eleetroh number density at the point
rhay be evaluatéd by a vélocity-integral over the lo¢al velocity distribution. Sim-
ilarly, the current density may bé evaluated at desired locations (usually the body
surface).

It is convenient to classify various theoretical approaches on the basis of How
they treat the trajectory part of the Vlasov problem, An "inside-out" method fol-
lows the trajectories backward in time to their sourcé, whilé an "outside-in" method
follows the trajectories forward, in the direction of physical motion of the particles,
{In an outside-in rmethod, the vélocity-distribution function is not calculated; rather,
the density is evaluated directly.) There are in addition other (1éss realistic)
methods involving approximations where trajectories are not followed at all. The
three types of approaches are diséussed in Parker. 1 There exists as yet no
systematic comparison of the results of the various approaches with one another.

For the purposes of discussing the inside-out method, we defifie here the péra-
meters of interest:

Plasina Parameters

n, = uriperturbed nuniber density at infinity
Ti' Te = fon, électron téimperatiires (= T for équdl for arid electron
teimperatures)

m, fon miass (electron mass not required)
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Z‘-D = electron Debye length

Body Parameters

R, = characteristi¢ dimension

A = relative véloéity 6f body and plasma

&o = body potential

¢ = ed /kTé = diménsionless body potential

M= vom = jon Mach humber (stegc{:;?& :;Iach number assumed
Ap = Z‘.D/R o - Debye number

Henceforth, all léengths are to be considered normalized by R o Thus, XD will
denote the dimensionless Debye number. We also considér here thé case of equal
temperatures. Poténtials are normalized by kT/e, so that ¢(r) denotes the dimen-
sionless potential at the spatial point T. Number densities are normalized by n.
8o that n(T) denotes the dimensionless denaity at . In the calculations involving
integrations over velocities, v will denote a velocity normalized by the value of
\] 2kT/m associated with the particles of interést. Similarly, E will denote total
energy normalized by kT. Velocity-distribution functions (denoted by f) will be
normalized by n,,. For a given body geometry, there are three dimensionless
physical parametérs of interest, namely, Ap, (bo. and M. (For unéqudl tempera-
tures, the temperature ratio T,/ T, représents an additional parameter. )

Consider a single species of (charged) particle, that is, ions or electrons.
The electric field is assumed to be knowsi. In order to corfiputé the number density
n(T) at the point ¥, one must évaluate the triple integral over velocity space:

n(¥) -ff €7, V) av, dv v, (1)

where £(T, V) is the distribution funétion which satisfies the Boltemann equation

for the given species of particle, T is the radius vector of the space point of interest,
and V is the 16cal velocity of a particle at F. The velocity-volume element is
written a8 if cartesian coordinates were being used, but the product dv dv dv, is
intended to 8ymbolize an arbitrary coordinate system. Similarly, in order to
compute the collected flux at points on the surface of a body, orie must evaludte at
each point 4 triple iutegral over velocity spacé of the form

G f j f (7, ) v dv,dv dv, (2)
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Where A is the component of the partiéle velovaity riormal to the surface at the
point r.

The problem is thus to evaluate f. Since the problerns of interest are assumed
to be collisionless and constant in time, the distribution function f satigfies the
steady-state Vlasov (or collisionless Boltzmann) equation, nameély,

i?.-vf+‘£-vvf=o (3)

where 3 i8 the vector acceleration of a particle passing with velocity v through
the point ¥. The gradient operators 7 and V¥, operate on the components of T and
of V, respectively. Equation (3) states that f is constant along a particle orbit,
e which is characterized by the constants of the motion. In a geneéral electrostatic
o field (here assumed given) whose sources are volume and surface charges, the
. total energy E i8 conserved, where the dimensionless E is defined by :

Es?44(F) @)

and ¢(T) i& the dimensionless potenhal energy of the particle at r. 4
With ¢(T) a known function of T, oneé may evaluate the integrals in Egs. (1) :
and (2) by following orbits backward in tirme with trajectory calculations to a point “
where f is known. For example, in the case of 4 body immersed in a plasma, f '
is assumed to be known at infinity (where # vanishes), and i5 agsumed té have at
infinity a prescribed energy distribution, such as a Maxwellian with drift, or a
more general distribution. Also, f is aBsumed to be known on the surfaces of the
spacecraft. If a surface emits particles, its distribution furiction must be pres-
=3 cribed. If the surface absorbs without reemitting charged particles, the distribution :
: function (of emitted particles) is prescribed to be zero. Thus, fis discontinuous
= in velocity space. That is, the physically-possible velocity space (at the point r)

‘ is divided into three domains, namely, the domain of orbits which have come to T
from infinity, the domain of orbits which have come to T from the spacecraft gur-
faces, and the domain of trapped orbits (assumed to be unéccupied). The shapes of
the boéundaries between the domains depend, of course, on the geometry and the
potential function 4, and it is the heart of the problem (1) to determine the boundi-

- ries of the domains of orbits, arnd (2) to evaluate the integrals Eqs. (1) and (2) over
o those domains of velocity space.

‘ In practice, orie need not in general determine explicitly the boundiry of a
domain {n vélocity space. Rather, one may follow a large number of orbits baci-
ward in time (computationally), and évedluate the momierit fritegrals; Eqs. (1) and
(2), automaticaliy from the results uf the orbit- -followirig. it may, however, urider
80me circumstinces be more accurate and efficient to determine this bouridary. To

. do 80 would complicate the computér progiamming,
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For a Maxwellian distribution flowin

g along the z-direction with Mach number
M, the dimensioniess velocity-

distribution function at infinity may be written:

2 2
¢ = 1 e "(V“ + M® - 2MV2w) .
o ,3/2 g3/2 €

2 2 . ,
-(¢+v°+M“ . 2Mu“) (5)
(velocities in units of. \[ 2.k'1‘/m .

¥ = axial component of velocity)

where ‘v: =vi+ ¢ may be identified with the total energy E, and Y withv E

times the cosine of the angle between -Jw and the axis.
distribution may also be used to represent particles em

moment integral (1) for number density may be approxi:
as follows:

A similar Maxwellian
itted from the surface. The
mated by a quadrature sum

.. I1J K
i / // Mot =R T A S Bl ©
where d°v i8 a short-hand notation for the eléement d\'rxdvydv »+ and 8 is a cutoff
(or step) function, equal to unity or zero, depending on (1) whether the trajectory
is found to comé from infinity or the body surface, and (2) wheéther n represents
the density contributed by particles from infinity or from the surface. In the sum,
the three indices refer to discrete values of three components of velocity, where
the values are chosen in accord with a quadrature scheme (Gaussian),

and the
coefficients A{jk are proportional to the assoclated weights and other factors. Each
term in the sum represents an individual traj

ectory. A similar sum is obtained
for the flux.
In order to evaluate Eq. (6) for the density,
the flux, we transform to energy (E) and angle (
We define a and 8 by:

or the corresponding equation for
a, B) variables in velocity space.

@ = polar angle with respect to z-axis
B = azimuthal angle with res
point T,
The angles a and 8 which define the orientation of the
defines its magnitude) are {llustrated fn Figure 6.
It {s shown by Pa’rl‘('e:"1 that the tritégrals for botii the dénsity and fluk can be
transformed to the following form suitable for Gaussian duadratures:

Pect to the plane contatning the z-axis and the

velécity-vector "v’(ivhue\{i:"
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2-axis

Figure 6. Angle Variables in Velocity Space

1.1 .1
I =/ / / T(4,b,c) - 6(a,b,c): dadbdc . (1)
-17/-1/-1

Hére, the ranges of a,B, and E have been transformed to the inteérval (-1, 1) through
the use of new variables a,b, and c¢. In terms of these latter variables, ¢, B, and

E.dre given by

ala) = cos”'a for density ®
8

afa) = sin-! d —1—;1 for flux
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\ where the range of o is from 0 to 7 for density and from 0 to 7/2 for flux; the range
R of 8 is frém 0 to 7; and the range of E {s from $5 to infinity, where ¢g denotes the
. potential of the s6urce (infinity or the surface). -

The-gefinition of T in the integrand of Eq. (7) is as follows:

JM for density
e' U(an b, C).- *

- LICER P

T(a,b,¢) =

where U(a,b, ¢) is given by

Ula.b,e) = - 8, + E(c) + M? + 2MVE( - cosa, (a,b, ) (12)

with o, denoting the value of the polar angle of the velocity-vector at infinity,
which depends on the local valuet of o, 8, and E (through a,b, and ¢). The product '
JE— © cbsa, in Eq. (12) is ideéntical to the quantity v 400 10 EqQ. (5).

Now it i8 convenient for flexibility to divide the a-domain into M, equal sub-
intervals, the b-domain ints M,;, equal subintervals, and the ¢-domain into M,
équal subintervals, and then to use Gaussian quadratures of order 2 in each
subinterval. This leads to a sum of the following form:!

b 2 e 2
. Z Z T(alble') - 6(alblc")
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Finally, the form of Eq. (#) may be obtained from Eqs. (13) and (14) by
writing

1 J K
1
S ¢ XX Y T.b,c): bla,b,,c) (15)
MaMbMeijk 1'%y %k i* Py %k
where
ai=a' with i=Ja+2(Ka'”
bj‘=b' withj=Jb+2(Kb-1)

(16)
ckfc' with k'=Jé+2(Ke-1)

I ‘—'2Ma J=2Mb K=2Me

The sum of Eq. (15) consists of 8 MaMbMe terms, each of which represents a
trajectory, followed backward from the point of inteérest. The cutoff function
b(ai, bj' ck) i8 zero or unity, depending upon the trajectory defined by the indices
i, J, and k characterizing the initial velocity components. The case illustrated in
Figure 4 is for contributions from the ambient plasmad; for contributions fror the
surface, Oijk is zero or unity according as the trajectory reéaches infinity or the
body surface, respectively.

The computed results to be preseénted later are based on the aSsumption of
no surface emission,

The method of computation of orbits involves integration of the equations of

motion, with the forces given by the components of the gradients of potential. These

componhents are obtained by interpolation between values of potential définéd at the
points of the grid, say of Figure 3, as described in Parker. ! The criterion for
"escape" or "absorption" of an orbit (that {s, evaluation of 6) depends or the
geometry of the problem and of the grid. The equations of motion are integrated
step-by-step until the orbit either passes out of the outer boutidary of the grid
("escapes") or returns to the spacecraft surface (is "absorbed",. The orbit compu-
tation time-step is not of physical importance in these time-independent problems
where orily the shapé of the orbit matters. The time-gtep is kept as large as
possible consistént with maintaining the enetgy loss or gain within desired lifnits.
The method of integrating the equations of thotion, the interpolation method to find
the forces, and the control of step size, dare discussed iri Parker, !

An important consideration {s the accuracy of the quadrature-suin. Naturally,
the dccuracy is related to the number of terms used, that is, the number of orbits
where edch term corresponds to a unlgue orbit. In a test of the enérgy quadrature
dlone, and with M = 0, the unperturbed value of density (unity) was computed for
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values of M, = 1, 5, 4, 8, 16, and 32, The corresponding numerical errors were
-8 percent, -7 percent, +1. 5 percr.t, 0,05 percent, +0. 013 percent, and +0. 003
percent. This test was {ndependent of geometry (the o and B integrations were
numertcally exact). Thus, Mg = 4 (8 values of E) is taken té represent sufficient
accuracy (within a few percent) for the purposes of computing density ‘o a
Maxwellian distribution without drift (or, for electrons). For large Mach number:
(M) the accuracy of the above unmodified quadrature is diminished. Modification
for improving the accuracy at large M by suitably weighting the integrand in the
domains of importance are given in Parker.

3. THE POISSON PROBLEM: POISSON DIFFERENCE EQUATIONS

In the present problem the electrostatic field is axially symmetric and is
defined on a mesh of spatial grid points, such that at any point (including grid
points) the potential and electric field can be obtained by interpolation.

Asgsume that the épace charge density is known at the grid points. Consider a
group of interior grid points, forming a portion of the overall grid as shown in
Figure 7. In this figure, the vertical and horizontal directions are the 2z and r j
directions, respectively, where 2 and r detote the cylindrical axial and cylindrical ]
radial coordinates, respectively. Three horizontal grid lines, of constant z-values :
2,y 2y 80d Zj4q and three vertical grid lines, of constant rvalues ry_q. Ty and
T4y are shown in the figure. (Note that the index (i) of z itcreases as 2 decreases. ) i
’Iahe set of grid lines intersect at 9 grid points, or nodes, as ghown. Each point
may be considered to be adsociated with a volume of space, and to have a group of
four neighboting points which “interact" with it. Thus, consider the central point

of the group, labeled C in the figure, which may be identified with one of the grid
points in Figure 3. Asgociated with this point ig a volume of revolutioti (a torus)
whosge cross-section i8 rectangular and is shown by the réttangular ghaded drea
gurrounding Point C. The shaded area {s defined by connecting the midpoints of
the surrounding mesh rectangles. Let + denote the volume of the torus, and let
the neighboring points (above, below, to the right of, and to the left of C) be
labeled N, S, E and W (north, south, east and west, respectively).
Let the Polason equation be written in dimensionless form as ;

Fiep e i - n)/A (17)
e L v 1

where a,, T, AD" ¢ and p denoté the dimetisionless electron density, ion density, :
Débye niurnber, electrostatic potefitial and space-charge density, respectively, and |
all lengths are in urits of thie body radius.
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Figure 1. Group of Inierior Grid Points in r-z Grid

The grid lines may bé considéred to be arbitrarily chosen 8o that the mesh
intervals are nonuniform. In this cage the Poisson difference equations may be
obtained by integrating Eq. (11) over the volume 7 of the torus agsociated with

Point C:
ff vz¢d?=-/f/pd7!§-pcr (18)
L4 T

{s krown at the grid point C. The right-hand side has been approximated

where p
and p( i8 the value of p at Point C. By the

as shown sirce T is small in principle,
divergence theorem, . the left-Hand side becomes

[

b2
Ay (%%)N +Ag (%%)s + AE(

sls

)E * Aw(-g—g)w (19)
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where £ denotes the surface of the torus; 8¢/8n is the component of V¢ in the
outward normal direction at the surface; Ay, Ag, A, and Ay, denote the areas of
the north, gouth, east, and west surfaces, respectively; and the guantities
(9¢/ Bn)N.s. B,W denote values of 99/9n taken to be constant on the dorresponding
gurfaces.

(a¢/ nly g E,w may be approximated by differenée quotients, namely,

by = 9 (¢ ~ ¢)
(g'%)mE z’f:"‘i’ ('g%>s ¥ z’ﬁ 240 50

where ¢ denotes the potential at Point C and ¢y, 4g, $p. dy denote the neighboring
potentials. If Point C i8 an interior grid point, the areas Ay, Ag, Ag, and AW
are given by

1 2 2
ANy =3 [(rj+1 + rj) - (:t'j + z‘j_l) ]
Ag =By _
" (21)
ﬂ N
Ap =3 (rj + rj-l) (z,_y = 2449
and the volume 7 is given by
A
T = _zu (ti-l - 2{4_1’ (22)
Thus wé obtain the difference équation {n the form
where
C=Cy+Cg+Cp+Cy (24)
and
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Cys . Cy = [ (25)
E (r-j.,_1 rj) w ry rj-l)

This shows how to form. the difference equations used for the Poisson problems of
this paper. Equatfon (24} holds only for an "interior' point of the grid, that is, a
point surrounded by neighbors on all four sides. If Point C hag & khown neighbor-
ing potential (for ¢éxample, if Point C is adjacerit to the spacecraft surface), then
the corresponding term on the left-hand side of Eq. (23) is transferred to the
right-hand side ag 4 kRnown quantity.

The boundary conditions for the potentisls in the Poisson problem are as
follows. At points representing the body surface, the normalized potentials are
fixed at the chosen values. At the external (boundary) points of the grid, where
"infinity" i8 represented on the computer, a "floating" condition is optionally used,
namely, a linear relation between ¢ and 3¢/3n, the normal componetit of ¥¢. The
éxact relation of § 1o 9¢/8n is not ithportant when the external boundary of the grid
is sufficiently far away. (For the calculdtions to be reported, the agsumed rela-
tion was the samé as for a Coulomb potential.) In any cage, either the fixed
condition 4 = 0 or the floating condition will give the same results, provided the
grid boundary is moved sufficiently far out. The effect of various types of boundary
conditions representing "infinity" have been studied by 'I‘:iylor12 and by Parker
and Sullivan. 8 In general, the floating condition appears to be computationally
more efficient than the fixed one. Of course, thé floating condition bécomes ideal
when the trué relation between ¢ and 3$/3n is used, but this requires that the
asymptotic form of the solution be known ia advance. For &xample, seé Parker and
Whipple. 14 The boundary conditiona at the outer grid surfaces can be combina-
tions of fixed and floating conditions.

Consider a Point C on the outer boundary of the grid where a floating boundary
condition is chosen. If the potential is assumed to satiafy the lihéar law

8 3¢

on “ oz - "¢ (26)
on the z-boutidary (North or South), and

8 _ 98¢ .

-l D @7
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on the r-boundary (East only; B=u on the West), then the corresponding "neighbor
term' on the left-hand side 6f F4. (23) vanishes,_ and the corresponding "neighbor
coefficient" on the right-hand side of Eq. (24) {8 replaced by A or A, whére A is..
the appropriate area. The quantities o and B depend on the position and on the
assumed model for the variation of thz potential at large distarices.

Once the coefficients of all of t1e equations (correésponding to the grid points
where the potentials are unknowh) are computed, the system of linéar equations of )
the form of Eq. (23) may be solved by iieration. Point-successive over-relaxation -
is a well-known process and has been found to be effective in the present problem.
For the relaxation prodess, one rearranges the equations, so that the ''diagonal"
term i§ alone on the léft-hand side, while all the other terms are on the right-hand
side with the known charge-density tetm. Thus, Eq. (23) becomes 1

€4 = Cpby + Cads + Crbp + Cpbyy + PoT - 28) 1

First, an initial guess is made for the values of all the potentials. Then new
values are obtained from the left-hand sides of all of the equations (28), using pre-
vious values on the right-hand sides. One "sweeps'' through the equations success-
ivély, replacing the potentials on the right-hand sides withupdated-valties as they
bécome aviilable from preceding equations. This procedure is usually stable and
leads to convergence. ''Over-relaxation" is the process of mixing successive
potential iterates in Such a way as to enhance the rate of convergeénce.

Whern the poténtial distribution is such that the electron density ng i approxi-
mable by the Boltzmann factor exp($), the relaxation equations (28) can include the——. ..
électron density as an unknown function on the left-hand side. The equations are
then nonlinear; they may be solved for ¢ by a Newtonian process, with the ion
density n; cotisidered fixed. This procedure is promising for large-body pro’blems.l'

4. SAMPLE RESULTS APPLIED IN IN-SITU DATA

The calculationd reported here refer to two in-situ experiments, Ariel 115
and Explorer 8116, where data are available. These résults are preliminary in
thit they are intended as dn illustration 6f the capability of the program rather
than as a systenaatic study. Geometrically, the body is assuined to be a pillbox, a
evlinder of height equal to its diameter. The three dimensionless physical para- |
meters defining the problem are ¢, M, and Ap;, defined (earlier) by:

% = eoo/k‘r
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2B v eiin,

M..E..mv 02/2k1‘

Ap E 2p/R,

where T is the plasma temperature (assumed to be

¢° is the body potential (for a conducting nonemitting body), v, is the velocity of
the plasma flow relative to the body and parallel to its axis, m is the ion mass,
R, is the body radius, and A, is the dimensional Debye length.

The numerical parameters for the talculations to be d
order of 100 grid points,

the same for ions and €leétrons),

escribed include of the
istributed mostly in the wake region, ahd of the order

of 500 trajectories per grid point, distributed among the two angles and the energy.

4.1 Ariel.! Satellite—.

Figure 8 is a schematic drawing of the Ariel 1 satellite,

showing the location
of electron.and ion-probes, after Henderson and Samir.

15 The-boom-mounted

Spin czis

Figure 8. Arfel 1 Satéiifte Schematic. Shows main bédy, positive-ion probe,

and electron boom-probe
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probe measures electron-currents at a distance 5 R, from the center of the satel-
lite (mainbody) which has a radius Ry = 11.5 in o¥ 20 cm. The ion probe mounted
fear the surface and 6n the spin axis is a small sphere 6. 6 tines smuller than the
main body. The gatellite velocity is such that the ion Mach number is about 4. The
satellite potential ig about 4 kT (1 volt) riegative with respect to space. The satel-
lite radius is equal t6 about 10 Debye lengths. Due to the satellite motion, spin,
and orientation, the boom probe sweeps through the wake during each spin revolu- ‘
tion. In successive revolutions, it sweeps through at different angles and samples -
the structure of different parts of the wake.

Figure 9 shows normalized electron current data taken from the paper by
Heénderson. and Samir (their figure 4). 15 In particular, the data at 6 = 84° (labeled
"MAIN'") samples the wake structure associated with the main body,. while the data
at @ = 60° (labeled "I P.") samples the wake structure of the ion probe. We will
consider separately the main body and ion probe in the following comparisons
between the data and theoretical calculations........

4.1.1 ARIEL 1 MAIN BODY

Although the data in Figure 9 is "bumpy," the # = 849 profile for the main body
indicates a minor.central peak or bump, of height about 80 percent of ambient,
within the depleted wake reglon where the minimurh is about 50 percent of ambient.
Figure 10 shows transverse profiles computed for the wake of the rhain body,
of n; (normalized ion density), ng (formalized electron density), andé (dimension-
less potential) in the wake region downstream. The parameter values in Figure 10
are ¢, = -4, M =4, Ap = 1/10. Thirteen tnajor iterations (Poisson-Vlasov cycles)
were computed. The profiles are in transverse planes at various distances down-
- stream, and all lengths are normalized by the body radius. Thus, z denotes axial
distance downstream, in radii, with z = 0 defined as the rear surface of the pillbox
(looking into the wiake); and t denotes radfal or transverse distance from the axis
(r = 1 is the bbody radius). The profiles of n, n,, &nd ¢ are arranged vertically in—
order of increasing axial distance z. There are 8 values of 2, fiamely, 2 = 0.2,
0.5, 1.0, 2.0, 3.0, 4.0, 5.0, and 6. 0. Each profile is constructed of 9 values
of r, namely, r =0, 0.1, 0.3, 0.6, 0.8, 1.0, 1.2, 1.5, amd 2.0. The Guter-
boundary conditions are applied at z = § and r = 2; for the main-body problem, the
boundary condition at z = 8 is the fixed one, whiiz floating conditions are used
elsewhere. The profilés consist of straight-line segments tonnecting the values of
the functions (n;, n,, or ¢) computed at 72 grid points in the wake reglon. !
The featured of the wake structure are as follows. The near wake (2 < 1) is
clearly depleted of both ions and electrons, with the {sn density lower than the
¢électron density. Further downstream the wake becomes increasingly filled in,
between about z = 1 and 2 = 4, where 2 = 4 {8 the {on-Mach-number of radii
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, Figire 9. Norialized Electron Current versus Angular Position of the
Boom Probe, for Various Spin-Orientation Angles
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Figure 10.. Ariel 1 Main ¥Wody Wake Profiles. ¢, = -4, M =4,
XD = (10)’1 =0.1

downstream. In thig range of z the ion profiles tend to bé relatively noisy, indica-
ting sensitivity to numerical errors, which may in turn imply a tendency toward <
physical instability. The trend of the fori and electron profiles suggésts a radially-
inward bulk motion of the plasma within the wake as if it were a fluid wave propaga-
ting inward, pilifig up near the cerfer, arnd bouricing out again as it moves down-
gtreari. The disturbance has esgeéntiaily died away at 2 = 6 radii downstream.
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There is ao well-defined tentral bump similar to that in the experimental
data in Figure 9,

4.1.2 ARIEL 1 ION PROBE

A ccording to Hendersdon and Samir the profile in Figure 9 at ¢ = 60° samples
the ion probe wake gtructure. This structure i siinilar to that of the main body,
having a below-ambient central peak within a depleted region of abott the same
width as that associated with the main body. The iéon probe is about 1.7 Debye
lengths in radius and is biased at about 28 kT (7 volts) negative with regpéct to -
space. Hence it may be expected to produce at least a pronounced focusing effect,
as is borne out by the following computed results.

Figure 11 shows transverse profiles computed for the wake of the ion probe.
The notation is the same as that of Figure 10. The parameter values are ¢, = -28,
M =4, and.Ap = 1/1.7. Ten major iterations were cotiputed. The outer boundary
at z = 10 was placed sufficiently far downstream to ensure that thée disturbances of
interest are contained within the grid. Morebver, a floating condition is employed ...
there as well as elsewhére. (Thée number of grid points was larger than in the
main-body problem. )

The main features are as follows. The ion profiles at z = 1 and z = 2 show
that a strong focusing effect occurs near the body. Further downstream, howéver,
the disturbance dies out; there is essentially none at z = 8 and beyond.

The radially-ifward and outward bulk motion of the plasma as it fills the wake
is again a fluid-like feature. Apgain, there is no persistent peak at the center of
thé wake as indicatéed by the data. If this were. an isolated body, the Hendérson-
Samir data would imply that the peak persists far downstream to beyond a distance
of 33 radii. The present theoreétical calculation indicates no structure at z = 8 and
beyond.

4.1.3 COMMENT ON COMPARISON OF THEORY WITH EXPERIMENT

A central bump may perhaps be genérally expected on the basis of rionrigorous
theoretical arguments invoking (1) electrostatic focusing éffects or (2) convergence
of ion streams during the filling of the wake principally at a Mach number of radii
downstream, or (3) a combinaticn of these. ° However, préevious theoretical |
calculations indicatirig such buriips have been deficient in some respect with regard
to their rigorous sapplicability (for exaniple, cold ions, infinitely-lotig cylinders,
non-self-consistent). Similacly, there have béeti laboratory-simulation experiments
which have indicated bumps. 17 dowever, it is preséntly still difficult to simulate
ion transvérse velocity distributions in-the laboiatory, arid the effective ion
temperature is generally too low. Herice, there does not exist thus far an unambigu-
ous explaniation of the Ariéel 1 data. (Note: T, was not measured, but was assumed

here to be equil to T_. Theoreétically, buinps in the wake have been predicted for
T; less than Te.u'l )
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it is also of interest to roté that a large body produces a central-core enharncé-
ment, as will be shown later,

4.2 Explorer 31 Sutellite

The results of this section were obtained in the process of computing 4 number
of golutions to bé compared with in-situ data obtained on the Explérer 31, The
parameters adopted were suggested by Samir (private communication) based on
8 different pagses of the Explorer 31 satellite, as listed in his paper with Jew. 10
A small portion of two of these cases will be discussed heré, without a quantitative
c¢omparison with data, in order to illustrate a specific point.

Figure 12 shows computed electron and ion density transverse profiles it the
very near wake of a body with the parameters

o - -4.3
= -1
Ap = (6.9)
M = 3.4
These are the parameters in the case of Curve No. 1 of Samir and Jew. 16 The

computed profiles in. Figure 12 are at z = 0. 2 radii dowhstréam, that is, similar
to the lowest profiles in Figure 10 where the parameters are of similar order.
Here the vertical 8cale (normalized density) i& logarithmic, as opposged to Figtre
10, where it is linear. The ion densities are denoted by circlés and the eléctron
densities by squares. The principal features shown in Figure 12 are as follows.
For r greater than about 0. 8 radii, the ion density is higher than the electron
density. Moreovér, thé ion density drops more abruptly in the vicihity of the
"shoulder" (r= 1) than the electron density. In the central wake both densitiés are
far below normal, with the ion deénsity about an order of magnitude bélow the
electron density. This is theé usually-expécted picturé of near-wake structuré.

Figure 13, on the other hand, show# corrésponding computitional results for.
the case of Curve No. 4 of Samir and Jew, !5 where the parameters aré:

dg = -5.4 '1
A= (3.1
M =11

Here, the miost significant change ig the lower Mach number (1. 1). The curves in
Figure 13 are gualitatively different from those in Figure 12. The new electron
det:sity profile is shifted downward slightly, but the riew ion defisity profile is
thovéd up to approximately & constaiit rouglily equal t6 the riormal value.
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The fact that the fon wake density is above the electron density at all r may be
unexpected from the point of view of "raditiont]l” wake theory, but scems reasoaable
61 the basis of Langmuisr probe theory. 2-5 According io probe theory, a statiomary
negative electrostatic probe in a plasma will have adjacent to it a gheath in which
the fon density exceeds the electron density. If the probe begins to move slowly
relative to the plasma, one expects the sheatli structure at first to be only slightly
changed, with a continuation of the predominance of the ions over the electrons.

At sufficiently large velocity, however, the traditional wake strutture with electron
domination. nver ions should appear as in Figure 12. The value of ionn Mach number
at which the transition should occur has not been predicted but can be established

by additional computations of the preserit type.

5. A LARGE-BODY PROBLEM

In this section we consider the wake of a large body, 100 Debye lengths in

radius. ! The body i5 in the form of a disk oriented normal to the flow. For this
case (Figures 14 and 15) the parameter values are
Figure 14 Figure 15
¢° = -4 ¢° = <-4
= -1 - -1
M =4 . M =8
e Here the parameter values differ qualitatively from those of the preceding problems
s in that Ap i8 so small. This size of moving body is larger than has been previously
g treated by trajéctory-following, that is, realistic, calculations. The results show
‘“ whit may be expected for the wake structure of large hodies in general. This cise
A requires more éffort (computer time and judicious gelection of numerical para-
“E meters) than that of a smaller body. The solutions shown, therefore, are intended
M to be illustrative rather than accurate.

Six iterations, or Poisson-Vlasov cycles, were comiputed using the ion-density
in which succegsive {terates were not mixed, starting with the neutral ior

option,
The riomi{nal Aumber of trajectories, 512, wag used at

density as an initial guess.

ﬁ ' all grid points.
. b The profiles of n,, fi . and ¢ ifi Figure 14 are constructed in the same way and

i at the same grid points as in Figure 10. Tabulated values are given in Parker.

e The wake is essentially "empty' of both ions and electrons between ¢ = 0 and z = 1,

and begins to fill up between z = 2 and z = 3. In this way, the wake is qualitatively

siinilar to that in Figure 10.
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Two sett of lon-density profiles are shown on the left side of Figure 14, the
unlabseled pre files for the 6th order (6th tteration), and the profiles labeled A"
for the 5th order. Comparison of the ne-proﬂlee with the 5th ordér ni-profiles
(labeled "A" to denote that the ¢-profiles and n -profiles in the figure are derived
from these) indicates that the quasineutrality assumption is valid éverywhere out-
side a cone-shaped region rear the wake surface; the cone height along the axis is
bétweett 1 and 2 radif. This is in accord with expectation for a large body. Near
the wake surface, however, quasineutrality is violated because the effective Debye
length is large. The similarity of the n,-profiles (labeled "A") and the ng profiles
in Figure 14 is a con8équénce of néar-quasineutrality.

Comparison of the 5th and 6th order n;-profiles (labeled "A" and unlabéled)

.

in Figure 14 show that the solution is reasonably converged for z = 1 and below,
but that there is incomplete convergerice at z = 2 and beyond. The incomplete
convérgeénce and apparent structure at z = 2 and beyond may be artifactual due to
insufficient numerical accuracy. (No attempt was made to achieve high accuracy
since this was regarded as a preliminary run.) The structure and lack of conver-
gence arc geen to extend past z = 5, so that the downstream boundatry should be
placed further than at z = 6.

Despite pogsible inaccuracies, one may infer additional physical conclusiohs
indicated by Figure 14, tiamely, (1) the suggestion of a core of high (approximately
ambient) density of ions and eléctrons on the axis, and (2) the occurrence of a
potential weéll in the near wake, defined as a region with ¢-values below -4. The
shading in the two lowest ¢-profiles denote cross-sections of this well. The wake-
surface normalized fluxes are 1.1 X 10-8 (5th order) and 2.4 X 10”7 (6th order)
for ions, and 4.3 X 1073 g - electrons. The electron current density i8 less taan
exp(-4), as would be expéctcd in the presence of 4 potential well.

The region of wake disturbaticé probably extends moré than 6 radii downstream,
and betweén 2 and 3 radii in the transverse direction.

Another large-body case (Figure 15) is gimilar to the previous large-body
case except that the Mach number is increased from M = 4toM =8. Ten itera-
tions weré computed in which successive iterates were used without mixing,
starting with uniform ambient ion density. (The latter startihg condition was in-
advertently different from that of the M = 4 calculation which was started with the
neutral {on density, but this difference should become unimportant after many
iteratiofns. ) Simiilar statements may be made about the incompleteness of the
convergence as in the M = 4 case. The 9th and 10th order ion densitiés are
labeled "A" and unlabeléd, respectively. Or comparing these, the convergence
seems fairly good at 2 = 0.5 and 2 = 1. Again, the disturbance extends beyond
2 = 5, so that the downstiream boundary sliould bé moved furthér than 2 = 6.
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Despite inaccuracios, the consistericy {8 such that physical conclusions may
be drawn as follows. In this case, the wake 18 saén to remain empty further down-
stream than in the M * 4 case. In addition, the suggestion 18 much stronger that
there 1b a central core of ambient density for both lons and clectrons along the
ax{s. Moreover, the potential well {s wides afid longer than in the M - 4 ecage,
although the dopth is about ihe same. The normalized wakeo-surface fluxés ape
7.4 % 10-30 {9th order) and 4.2 X 1030 {10¢h order) for lons, and 3.7 % 10°3 for

electrons, The electron flux is slightly 12ss than the M = 4

valu¢, and is again
less than exp(-4),

The cohical region behind the digk where quasineutrality breaks down is now

longer than {n the M - 4 cage, extending to between 2z = 4 und z = 5 along the axis.

The region of wake disturbance is probably longer than 6 radii dowtistream,

as in the M = 4 case, but may not extend beyond about 2 radii in the transverse
direction.
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